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Steroid production in toads�
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Abstract

In Bufo arenarum, androgen biosynthesis occurs through a complete 5-ene pathway, including 5-androstane-3�,17�-diol as the im-
mediate precursor of testosterone. Besides, steroidogenesis changes during the breeding period, turning from androgens to C21-steroids
such as 5�-pregnan-3�,20�-diol, 3�-hydroxy-5�-pregnan-20-one and 5�-pregnan-3,20-dione. InB. arenarum, steroid hormones are
not involved in hCG-induced spermiation, suggesting that the steroidogenic shift to C21-steroids during the breeding be not related to
spermiation. The activity of 17-hydroxylase-C17–20 lyase (CypP450c17) decreases during the reproductive season, suggesting that this
enzyme would represent a key enzyme in the regulation of seasonal changes. However, the increase in the affinity for pregnenolone of
3�-hydroxysteroid dehydrogenase (3�HSD)/isomerase could also be involved. Moreover, the reduction in CypP450c17 leading to a reduc-
tion in C19-steroids, among them dehydroepiandrosterone (DHE), would contribute to the conversion of pregnenolone into progesterone,
avoiding the non-competitive inhibition exerted by DHE on this transformation. Additionally, CypP450c17 possesses a higher affinity for
pregnenolone than for progesterone, explaining the predominance of the 5-ene pathway for testosterone biosynthesis. Animals in repro-
ductive condition showed a significant reduction in circulating androgens, enhancing the physiological relevance of all the in vitro results.
The in vitro effects of mGnRH and hrFSH on testicular steroidogenesis revealed that both hormones inhibited CypP450c17 activity. In
summary, these results demonstrate that, inB. arenarum, the change in testicular steroidogenesis during the reproductive period could be
partially due to an FSH and GnRH-induced decrease in CypP450c17 activity.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

There are several reports showing that, in amphibians,
testosterone and 5�-dihydrotestosterone (DHT) represent
the major androgens secreted by the testis[39,40,50,64].
Nevertheless, the production of C21-steroids such as 5�-pre-
gnan-3�,17,20�-triol, 17,20�/�-dihydroxy-4-pregnen-3-one
(17,20�/�P4), and 20�-hydroxy-4-pregnen-3-one (20�P4)
has also been detected[40]. However, the role of testic-
ular C21-steroids in amphibian reproduction has received
little attention. Kobayashi et al.[41] have demonstrated the
biosynthesis of 17,20�P4 in Rana nigromaculata, suggest-
ing that this steroid is involved in hCG-induced spermiation,
although the seasonal variation of this steroid has not been
determined.

Plasmatic concentration of sexual steroids through the re-
productive cycle has been determined by RIA, in several am-
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phibian species[33,34,45,66]and a relationship between an-
drogens and the development of secondary sexual characters
has been clearly established[16,37,59,61]. The relevance of
androgens in sexual behaviour remains more controversial.
In species such asXenopus laevis[65], Pachymedusa dac-
nicolor [60], Rana catesbeiana[45] andTaricha granulosa
[61], the reproductive behaviour seems to be associated with
high levels of plasmatic androgens. However, other studies
failed to determine a correlation between androgens and be-
haviour [49,64]. In several amphibian species, it has been
shown that plasmatic androgens decline in spring, when the
reproduction takes place, reaching the lowest values in sum-
mer [30,37,60]. Besides, gonadotropins are believed to be
involved in the regulation of steroidogenesis by stimulating
testosterone production. However, both LH and FSH rise
during the reproductive season even if androgen levels are
declining[36–38,42,55]. Thus, several aspects of the regu-
lation of steroidogenesis as well as steroid function in am-
phibian reproduction require more research.

Bufo arenarumis a species that, as a consequence of its
wide geographic distribution, possesses an extensive repro-
ductive season (September to February), its reproduction be-
ing highly dependent on the local weather conditions. Thus,
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this species has been classified as an opportunistic or explo-
sive breeder whose breeding behaviour correlates with the
heavy rains of spring and summer[25]. For those popula-
tions surrounding Buenos Aires City, the breeding season is
restricted to the period between September and December.

It has been previously described that inB. arenarumsper-
matozoa can be found all year long[56]. These results could
be interpreted as an adaptation to the unpredictability of
the environment. Moreover, the spermiation can be stim-
ulated by gonadotropin injection at any time of the year
[26,27,56]. As consequence, this species can be charac-
terised as a potentially continuous breeder. Additionally, ex-
periments performed in our laboratory have demonstrated
that hCG-induced spermiation is not mediated by steroid
biosynthesis[56], these results being opposite to those from
Kobayashi et al.[41]. However, they raise the speculation
that C21-steroids could play a role in other processes asso-
ciated or simultaneous with spermiation.

The present article summarises our results on steroid
biosynthesis capability and its regulation inB. arenarum
and discusses them in relationship to the present knowledge
in amphibian reproductive endocrinology. We hope that this
article will serve as a stimulus for further research in steroid
hormone biosynthesis and function in amphibian gonads.

2. Steroid biosynthesis

Steroidogenic studies inB. arenarum [8,11] showed
that pregnenolone is efficiently transformed into several
C19-steroids such as dehydroepiandrosterone (DHE), 5-
androsten,3�,17�-diol, testosterone, DHT and other C19-
reduced steroids (Table 1). Besides, C21-steroids such as pro-
gesterone, 5�-pregnan-3,20-dione (5�-pregnanedione), 3�-
hydroxy-5�-pregnan-20-one, 5�-pregnan-3�,20-diol and
17-hydroxy-4-pregnen-3,20-dione are described, although
they were scarcely isolated in the non-reproductive con-
dition (Table 1). Even the presence of high plasmatic and
testicular levels of estradiol has been described in other
anuran amphibian[20,54], in B. arenarumno oestrogen
biosynthesis could be detected. This difference could be
due to the fact that male toads possess rudimentary ovaries
attached to the testes, called Bidder’s organs. Estradiol
could be synthesised in this organ as previously suggested
by Ghosh[28].

Additionally, the combined interpretation of double-
labelled experiments and isotopic dilution experiments[11]
as well as biosynthetic results suggests the predominance
of a complete 5-ene pathway for androgen biosynthe-
sis, including 5-androsten-3�,17�-diol as the immediate
precursor of testosterone. Although testosterone comes
from that precursor, a small proportion is also produced
from androstenedione[8,11]. However, androstenedione
is synthesised from dehydroepiandrosterone and not from
progesterone, suggesting that this species completely by-
passes progesterone for androgen biosynthesis. A similar

Table 1
Steroids isolated from incubations of testis fragments with [3H]pregne-
nolone

Steroid Non-reproductive Reproductive

C19

Dehydroepiandrosterone 4.9± 0.8 N.D.
5-Androsten-3�,17�-diol 24.8 ± 3.0 N.D.
Testosterone 9.9± 1.1 1.3± 0.6∗
5�-Dihydrotestosterone 26.0± 1.8 N.D.
Androstenedione 2.2± 0.3 0.4± 0.2∗
5�-Androstan-3,17-dione 4.8± 0.9 N.D.
5�-Androstan-3�,17�-diol 2.9 ± 1.5 4.0± 1.1
3�-Hydroxy-5�-androstan-17-one 2.5± 0.9 2.1± 1.0

C21

Pregnenolone 10.3± 1.6 36.5± 3.9∗
Progesterone 0.1± 0.1 10.3± 1.1∗
5�-Pregnan-3,20-dione 2.7± 0.5 13.8± 2.6∗
3�-Hydroxy-5�-pregnan-20-one 0.8± 0.3 13.4± 1.2∗
5�-Pregnan-3�,20�-diol N.D. 13.5± 1.2
17-Hydroxy-5-pregnen-3,20 dione 2.5± 1.0 N.D.
20-Hydroxy-5�-pregnan-3-one 0.8± 0.3 13.4± 1.3∗

Yield in percentage of isolated steroid from incubations of testis frag-
ments from animals in non-reproductive and reproductive period, in the
presence of [3H]pregnenolone. Each value represents media±S.E. of nine
(non-reproductive) or seven (reproductive) independent experiments.

∗ Significant difference (P ≤ 0.01) between periods.

“full 5-ene pathway” has also been described for aldos-
terone biosynthesis in the interrenal of the same species
[13]. A 4-ene pathway, pathway not conducing to andro-
gen biosynthesis, is also described. This pathway is im-
portant for the production of 5�-pregnanedione and other
progesterone-reduced derivatives. Besides, these results also
show that toad testes possess, as other amphibians, a high
5�-reductase (5�Red) activity, this enzyme being important
for DHT and 5�-pregnanedione biosynthesis. Moreover,
toad testis also expresses 3�-hydroxysteroid dehydrogenase
(3�HSD) activity. The production of 5� and 3�-reduced
steroids was also demonstrated in other anuran species
[38,39,50,64], suggesting that dehydrogenation in positions
C3 and C5 is a common feature in amphibian testes.

In addition, the ability of toad testes in shifting the
steroid production from androgens to C21-steroids dur-
ing the breeding season is described (Fig. 1) [10]. Testes
from non-reproductive toads synthesise androgens through
a complete 5-ene pathway. Under this condition, proges-
terone is scarcely isolated, probably because it is completely
transformed into 5�-pregnanedione. On the contrary, dur-
ing the breeding season the recovery of 5-ene steroids and
androgens is significantly reduced while progesterone and
its 3�/5�-reduced derivatives increase. A similar shift in
steroidogenesis has been described in fish[51] but not in
other amphibian.

The molecular mechanism involved in the regulation of
steroid production was studied by analysing the percentage
of contribution of each steroidogenic enzyme to the total
metabolism in both periods. As shown inTable 2, a signifi-
cant reduction of 17-hydroxylase-C17–20 lyase (Cyp450c17)
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Fig. 1. C19 and C21-steroids in reproductive (R) and non-reproductive
(NR) periods. Yield are expressed as percentage of isolated steroid from
incubations of testis fragments with [3H]pregnenolone. Each value repre-
sents media± S.E. of nine (NR) or seven (R) independent experiments.
Asterisks show significant differences (P ≤ 0.01) between periods.

Table 2
Contribution in percentage of steroid metabolising enzymes during
non-reproductive and reproductive periods

Enzyme activity Non-reproductive Reproductive

3�HSD 54.66± 1.46 59.62± 4.55
Cyp450c17 78.04± 2.76 7.87± 2.19∗
17�HSD 63.67± 4.93 5.29± 1.38∗
5�Red 34.17± 1.56 39.36± 5.77
3�HSD 8.11± 1.12 20.61± 3.48∗
20HSD 0.82± 0.35 29.95± 3.46∗

3�HSD: 3�-hydroxysteroid dehydrogenase/isomerase; Cyp450c17:
17-hydroxylase-C17–20 lyase; 17�HSD: 17�-hydroxysteroid dehydroge-
nase; 5�Red: 5�-reductase: 3�HSD: 3�-hydroxysteroid dehydrogenase;
20HSD: 20-hydroxysteroid dehydrogenase.

∗ Significant difference (P ≤ 0.01) between periods.

and 17�-hydroxysteroid dehydrogenase (17�HSD) during
the breeding is detected while the contribution of 3�HSD
and 20-hydroxysteroid dehydrogenase (20HSD) increases.
However, the contribution of 3�-hydroxysteroid dehydroge-
nase/isomerase and 5�Red does not change during the re-
productive cycle, suggesting that in the toad, the contribution
of Cyp450c17 would be a key factor to explain the steroido-
genic change mentioned above. Nevertheless, the increase

Table 3
Km and Vmax of microsomal 3�HSD and Cyp450c17 activities

Enzyme Substrate Km Vmax

NR R NR R

Cyp450c17 Pregnenolone 43.76± 4.63 37.46± 4.19 0.29± 0.01 0.06± 0.01∗
Progesterone 217± 63 306± 19 0.28± 0.02 0.05± 0.02∗

3�HSD Pregnenolone 2900± 400 860± 190∗ 0.19 ± 0.08 0.60± 0.02
DHE 220± 60 1040± 160∗ 0.28 ± 0.09 0.21± 0.06

Km andVmax of microsomal 3�HSD were measured with subsaturating concentrations of pregnenolone (0.2–5�M) or DHE (0.05–3�M) in the presence
of 0.5 mM NAD+. Km and Vmax of Cyp450c17 were determined with subsaturating concentrations of pregnenolone (2.5 nM to 1�M) and progesterone
(25 nM to 10�M) in microsomal fraction and 0.5 mM NADPH. Kinetic parameters were calculated by Wilkinson linearisation. Values represent means
of eight independent experiments± S.D. NR: non-reproductive period; R: reproductive period.Vmax: nmol/min mg protein;Km: nM.

∗ Significant differences between periods withP ≤ 0.01.

in the activity of 3�HSD could also be involved. Consider-
ing that products of Cyp450c17 are substrates of 17�HSD, a
reduction in the activity of the cytochrome could be respon-
sible for the decrease in the contribution of 17�HSD. As a
consequence, it is possible that the change in the contribu-
tion of 17�HSD detected in the reproductive season does
not necessarily represent changes in its activity.

Results concerning Cyp450c17 contribution were con-
firmed by the study of kinetic parameters of the enzyme
in both reproductive conditions (Table 3). Pregnenolone is
the preferred substrate in both seasons[21], supporting our
previous data regarding the predominance of the 5-ene path-
way for testosterone biosynthesis. The high affinity of toad
17-hydroxylase for pregnenolone is similar to that described
for progesterone inN. maculosus[7]. However, the pre-
dominance of the 5-ene pathway for androgen biosynthesis
in this species has not been assessed yet. Moreover, ani-
mals in reproductive condition show a significant reduction
in Vmax of Cyp450c17. Consequently, the reduction in the
activity of the cytochrome is probably the most important
factor involved in the reduction of androgen biosynthesis.
However, other enzymes like 3�HSD could be involved as
well. During the reproductive season, the affinity of 3�HSD
for pregnenolone as well as the biological active enzyme in-
crease while the affinity for DHE decreases (Table 3) [58].
These modifications in 3�HSD adjust the enzyme activity
to the decrease in DHE availability, representing an adapta-
tion to a new biochemical situation. Besides, DHE produces
a strong non-competitive inhibition of pregnenolone con-
version while pregnenolone a slight competitive inhibition
of DHE transformation[57]. Consequently, the reduction
in Cyp450c17 that conduces to a decrease in C19-steroids,
among them DHE, would contribute to the conversion of
pregnenolone to progesterone, avoiding the non-competitive
inhibition exerted by DHE on this transformation.

As animals in reproductive condition exhibit a significant
decrease in circulating androgens while 5�-pregnanedione
increases, it is possible to conclude that the in vitro experi-
ments highly correlate with the in vivo results (Fig. 2). Even
if low levels of plasmatic androgen during the reproduc-
tive season have been also found in other amphibian species
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Fig. 2. Plasmatic concentration of immunoreactive testosterone (T),
DHT and 5�-pregnanedione (pregnanedione) in animals collected during
non-reproductive (NR) and reproductive (R) periods. Results represent
means of 10 independent determinations for each period± S.E. Asterisks
symbolise significant differences compared with NR period (P ≤ 0.01).

[16,37,61], this is the first time that this decrease is associ-
ated to an increase in C21-steroids.

3. Regulation of steroid production

Although the role of androgens in amphibian reproduc-
tion has been studied[44], the regulation of its secretion re-
mains still obscure. The available antiserum to testosterone
possesses, in general, a high cross-reactivity with DHT and
the results obtained are generally expressed as androgens.
However, in this way, changes in 5�Red activity could be
masked while information on the production of different
steroid hormones such as 5�-pregnanedione or other pro-
gesterone derivatives would be missed. Besides, the study
of seasonal changes in in vitro androgen release or plasma
androgen concentration provides little information about the
mechanism involved in the control of steroid biosynthesis.
Therefore, the study of the regulation of steroidogenic en-
zyme activity can overcome these limitations.

The effect of hrFSH and hCG on steroidogenic enzymes
in a long-term incubation system was studied[9]. After 48 h
incubation, hrFSH strongly decreases Cyp450c17-associated
activities at all concentrations used (Fig. 3). However, hrFSH
does not modify 3�HSD activity (Fig. 3). Moreover, hCG
fails to decrease both Cyp450c17 activities except when a
very high concentration is used[9]. These results allow the
conclusion that FSH would be involved in the change of the
steroidogenic pathway. This effect seems to be specific for
Cyp450c17 since no effect on 3�HSD is observed. Further-
more, the effect of hrFSH on Cyp450c17 is specific of this go-
nadotropin since hCG has no effect on Cyp450c17-associated
activities[9].

In Rana, an increase in plasmatic FSH has been described
during the reproductive period[38,42]and although there is
no information about the plasmatic profile of gonadotropins
in B. arenarum, it is possible to assume that, during the
reproductive season, a similar increase in FSH could oc-

Fig. 3. Effects of hrFSH on 3�HSD and Cyp450c17 activities. Testis
fragments were stabilised for 2 days in L-15 medium with 10% FBS.
Medium was replaced by serum-free medium containing the indicated
amounts of hrFSH and incubated for 2 more days. After that, tissue was
homogenised and the enzymatic activities were assayed. Bars represent
average± S.E. of 12 replicates. Hydroxylase: 17-hydroxylase activity of
Cyp450c17; lyase: 17–20 lyase activity of Cyp450c17. Asterisks symbolise
significant differences between treatments and control (without hrFSH)
with P ≤ 0.01.

cur. Burgos and Mancini[6] have demonstrated that, in
this species, the spermatogenic wave starts in October and
November, when the reproduction takes place, and it is rea-
sonable to presume that FSH would be involved in this
process. In this sense, the action of FSH on Cyp450c17 ac-
tivities could explain the decrease in androgen production,
the concomitant increase in C21-steroids biosynthesis, and
the low level of plasmatic androgens as well as the increase
in plasmatic 5�-pregnanedione during the reproductive pe-
riod. However, the participation of other factors could not
be excluded.

In the rat, GnRH treatments provoke a reduction of
Cyp450c17, which could account for its antigonadal effects
[4]. If a similar inhibitory effect did exist inB. arenarumit
would represent a component of the regulatory mechanism
of steroid biosynthesis. Testicular GnRH binding sites ofB.
arenarumhave been characterised as a single low-affinity
high-capacity one[12]. The Kd (34 nM) is similar to the
low-affinity high-capacity receptor characterised in the pi-
tuitary of goldfish[32] and a little higher than the constant
determined for the testicular GnRH receptor ofRana escu-
lentausing cGnRH-II as radioligand[19]. As in mammals,
acute in vitro treatment with mGnRH blocks hCG-induced
androgen secretion at all the concentrations used (Table 4).
However, chronic in vitro treatment with mGnRH inhibits
the activity of Cyp450c17 at all doses assayed (Fig. 4),
indicating that this decapeptide could produce a strong re-
duction in androgen biosynthesis[12]. These results are
in agreement with those previously described in rat and
human[3–5], however, they disagree with those reported
for other amphibians, in which GnRH stimulates androgen
production [14,18,29]. This discrepancy could be due to
species-specific differences or it may represent animals cap-
tured at different reproductive or physiological conditions
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Table 4
Effects of mGnRH on the in vitro testosterone release

Treatments Androgens (ng/ml)

hCG (nM) mGnRH (�M)

0 0 401.3± 37.4
50 0 663.7± 60.1∗

0.1 432.2± 23.5
1 462.2± 45.1

10 440.5± 45.4

Testicular fragments were incubated for 2 h in 2 ml of incubation medium
in absence or presence of 50 nM hCG and/or the indicated amounts
of mGnRH. The basal and hCG-stimulated testosterone release were
determined by RIA.

∗ Significant differences withP ≤ 0.05.

Fig. 4. Effects of mGnRH on 3�HSD and Cyp450c17 activities. For exper-
imental conditions seeFig. 3. Bars represent average± S.E. of 12 repli-
cates. Hydroxylase: 17-hydroxylase activity of Cyp450c17; lyase: 17–20
lyase activity of Cyp450c17. Asterisks symbolise significant differences
between treatments and control (without GnRH) withP ≤ 0.01.

[31]. Other possibility is that the in vitro studies carried
out in ranids for a short-term period were not long enough
to reveal some inhibitory effect[29]. As mentioned be-
fore, in the rat GnRH treatments provoke a reduction of
Cyp450c17, which could account, at least in part, of its
antigonadal effects[4]. In B. arenarum, however, that in-
hibition would represent part of the regulatory mechanism
of steroid biosynthesis that, during the reproductive period,
shifts from androgen to C21-steroid production.

In summary, a shift in testicular steroidogenesis during
the reproductive season has been demonstrated for the first
time in an amphibian species, this shift mainly depending
on changes in Cyp450c17. Moreover, it has also been shown
that GnRH and FSH have a regulatory effect on Cyp450c17
activities, influencing testicular steroidogenesis.

4. Future directions

Having in mind that both GnRH and FSH have a sim-
ilar action on testicular steroidogenesis, the study of the
regulation and/or interaction between them could increase

the knowledge of the regulation of testicular function.
In this regard, it is important to establish the source of
GnRH involved in the regulation of testicular steroidoge-
nesis. GnRH-like materials have been shown in gonads
of Rana esculenta[2,15], goldfish [43,53] and mammals
[1,17,35,52]. However, our preliminary studies on testic-
ular production of GnRH, using a combination of HPLC
and RIA with a poly-specific GnRH-variant antiserum have
failed to demonstrate the presence of GnRH in testis of
B. arenarum. Immunohistochemistry employing antibodies
against mGnRH and cGnRH-II have given also negative
results. Nevertheless, GnRH could be originated in the hy-
pothalamus reaching the gonads through the blood stream.
In B. arenarum, mGnRH fibres in the neural lobe of the
pituitary gland have been described[48] and the authors
hypothesised that GnRH could be released to the general
circulation. If that hypothesis were accurate GnRH plasma
levels would increase during the reproductive period having
effects on testicular steroidogenesis. Alternatively, GnRH
could control testicular function via direct innervation.

Another interesting area of research is referred to the func-
tion of progesterone-reduced derivatives. The participation
of a C21-steroid in hCG-induced spermiation inRana nigro-
maculatahas been suggested[41]. However, inB. arenarum
it has been demonstrated that steroid hormones are not
involved in hCG-induced in vitro spermiation[56], suggest-
ing that the steroidogenic shift to progesterone derivatives
during the breeding season is not related to spermiation.
Although the participation of C21-steroids in amphibian
spermatogenesis remains to be determined, their role in
spermatogenesis seems to be very improbable. Such a role
has not been shown in either fish or mammals.

In the goldfish, it has been found that 17,20�-dihydroxy-4-
pregnen-20-one, acting as a pheromone, is released into
the water to induce sexual behaviour[62]. Moreover,
several 3�, 5�-reduced steroids have been described as
neuroactive-steroids, producing behavioural effects in mam-
mals [22–24]. In amphibian brain, both the production of
neurosteroids and the expression of steroidogenic enzymes
have been described[46,47]. Moreover, seasonal changes
in brain steroidogenic enzymes have also been described,
suggesting a role of neurosteroids in the breeding cycle
[63]. Consequently, it is possible that the reduced steroids
produced during the breeding season ofB. arenarumexert
their actions on the central nervous system, inducing the
expression of reproductive behaviour or even steroidogenic
enzymes.
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